A galaxisok égitestek: csillagok, csillagközi gázok, por és a láthatatlan sötét anyag nagy kiterjedésű, gravitációsan kötött rendszerei.[1][2] Egy tipikus galaxis tízmillió és ezermilliárd (107 – 1012) közötti számú csillaggal rendelkezik [3][4], és mind azonos középpont körül kering. A magányos csillagokon kívül egy galaxisban rengeteg több csillagot tartalmazó rendszer, nyílthalmaz, gömbhalmaz és köd található. A legtöbb galaxis átmérője több ezertől több százezer fényévig terjed és közöttük több millió fényév távolság a jellemző. A közöttük lévő űr nagyon jó vákuumnak tekinthető kevesebb mint köbméterenkénti egy atommal. Feltehetően több mint százmilliárd (1011) galaxis van a Világegyetem belátható részében.[5]
A galaxis szó a Tejútrendszer görög nevéből (Γαλαξίας) származik (a görög γάλα, gala szó jelentése tej), a monda szerint ugyanis a Tejút a Herkulest szoptató Héra istennő szétfröccsent teje. Az extragalaxis az összes, a Tejútrendszerünkön kívüli galaxis általános neve.
Az elméletek szerint a galaxisok tömegének 90%-át sötét anyag teszi ki, azonban ennek a tömegkomponensnek a természetét még nem ismerjük. A megfigyelési adatokból arra következtetnek, hogy számos galaxis középpontjában szupermasszív fekete lyuk található, bár ez nem igaz minden esetben, mert ha a galaxis középpontjában két fekete lyuk összeolvad (például egy másik galaxissal való ütközés következtében), akkor a keletkező új fekete lyuk gravitációs hullámok kibocsátása után kirepülhet a galaxisból, örökre elhagyva azt.[6][7]
A mi galaxisunk, a Tejútrendszer (sokszor csak Galaktika) küllős spirálgalaxis, a Lokális Galaxiscsoport egyik nagy galaxisa (a másik az Androméda-galaxis, mellyel néhány milliárd év múlva összeütközik), amelynek az átmérője 30 kiloparszek (100 000 fényév) és körülbelül 300 milliárd csillagot tartalmaz, a tömege egytrilliószor annyi, mint a Nap tömege.
1610-ben Galileo Galilei távcsővel tanulmányozta azt a fényes csíkot az égen, amit Tejútként ismertek és felfedezte, hogy rengeteg halvány csillagból áll. 1755-ben egy tanulmányában Immanuel Kant helyesen feltételezte, hogy a galaxis egy forgó test lehet, amelyet rengeteg csillag alkot, és ezeket a csillagokat valamiféle vonzóerő tartja össze (a Naprendszerben tapasztalthoz hasonló, csak ennél sokkal erősebb). Az ezáltal létrejött csillagokból álló lemez egy csíkként látszik, ha mi is benne vagyunk.
A 18. század végén Charles Messier kiadott egy katalógust a 109 legfényesebb ködről és csillaghalmazról, amelyet később követett egy 5000 objektumból álló katalógus (William Herschel összeállításában). 1845-ben William Parsons egy olyan távcsövet épített, amely különbséget tudott tenni az elliptikus és spirális ködök között. Egy jó ideig a ködöket nem ismerték el galaxisként, amíg Edwin Hubble az 1920-as évek elején be nem bizonyította, hogy az egyik legközelebbi galaxis, az Androméda-köd csillagokból áll, sőt, a benne lévő cefeidaváltozócsillagok segítségével sikerült meghatároznia távolságát is. 1936-ban egy olyan osztályozási rendszert állított fel a galaxisokra, amelyet ma is használnak.
Az első próbálkozás, amely arra irányult, hogy leírja a Tejút formáját és a Nap helyzetét a galaxisunkban, William Herschel által történt. 1785-ben figyelmesen megszámolta a csillagokat az égbolt különböző részein. Jacobus Kapteyn finomított módszert használva 1920-ban egy elliptikus galaxis képét rajzolta meg, amelynek az átmérője körülbelül 15 kiloparszek volt. Csak 1930-ban sikerült Robert Julius Trumplernek megrajzolnia azt a képet róla, amit ma is ismerünk.
1944-ben Hendrik van de Hulst előrejelezte azt a 21 cm hullámhosszú mikrohullámú sugárzást, amely a csillagközi hidrogén sugárzásából származik; 1951-ben lehetett először észlelni. Ez a sugárzás elősegítette galaxisunk részletesebb tanulmányozását.
Az 1990-es évek elején a Hubble-űrtávcső még jobb megfigyeléseket tett lehetővé. Többek között az is bebizonyosodott, hogy a hiányzó sötét anyag a galaxisunkban nem állhat csak halvány és apró csillagokból. Az is tudott már, hogy a látható világegyetemben több száz milliárd galaxis van.
Edwin Hubble ismerte fel azt a tényt, hogy az Univerzumunk nem csak a Tejútból áll, léteznek sokkal távolabb lévő égitestek, extragalaxisok is. 1926-ban vezette be a róla elnevezett osztályozási rendszert, ami alapján a galaxisokat 2 fő osztályba soroljuk: a szabályos galaxisokba, amelyek forgásszimmetrikusak, és sűrű középponti részük van, valamint a szabálytalan galaxisokba.
A leggyakoribb galaxistípus.[8] Ahogy azt nevük is mutatja, spirális szerkezetűek. A központi, megközelítőleg gömb alakú mag II. populációs csillagokból áll, melynek középpontjában, a galaxisok nagy részében, több millió naptömegű fekete lyuk van.
A galaxismagot lapos korong veszi körül, amelyben – hasonlóan a Tejútrendszerhez – spirálkarok helyezkednek el, ezek I. populációs csillagokból állnak, és sok csillagközi anyagot tartalmaznak, bennük jelenleg is zajlik csillagkeletkezés. A csillagközi anyag az össztömegnek csupán néhány százalékát teszi ki, és a galaxis fősíkja mentén erősen koncentrált. A csillagokhoz hasonlóan a spirálkarok is keringenek a központ körül, de nem állandó szögsebességgel.
A galaxis legkülső vidéke a gömb alakú halo, ennek sugara megközelítőleg a spirálkarokéval egyezik meg, és öreg, II. populációs csillagokból, valamint gömbhalmazokból áll. A magtól a periféria felé folyamatosan ritkul.
A spirálgalaxisok egyharmad része közönséges spirálgalaxis, kétharmaduk pedig úgynevezett küllős spirálgalaxis (jelölésük: SB). Mindkét típus esetében három alosztályt (a, b, c) különböztetnek meg, a galaxismag viszonylagos fejlettsége alapján (a: fejlett mag, c: viszonylag halvány mag). A küllős spirálgalaxisok három alosztályát (SBa, SBb, SBc) G. Vaucouleurs csillagász javasolta, ennek ellenére a Hubble féle osztályozásban a „d” altípust is alkalmazzák. Ez a rendszerezés azonban nem utal feltétlenül a galaxisok fejlődési stádiumára, amire nagy hatással vannak a galaxisütközések. Spirális galaxis a Vadászebek csillagképben található Messier 51 és a Nagy Medve csillagképben található Messier 101 jelű Messier-objektumok. Mindkét objektum esetében merőlegesen látunk rá a galaxis korongjára.
Kozmikus környezetünkben ezek a leggyakoribbak. Átlagosan 4-3500 milliárd naptömegnyi anyagot tartalmaznak. Csillagközi anyag nagyon kevés van bennük, ezért csillagkeletkezés sem zajlik bennük, következésképpen a nyílthalmazok is hiányoznak ezekből a galaxisokból. Csillagaik öregek, a II. populációba tartoznak. Ezen tulajdonságaik miatt hasonlítanak a gömbhalmazokra, csak sokkal nagyobbak, bár valószínűleg átmenet van a két égitesttípus között.
Az elliptikus galaxisokat lapultság szerint csoportosítjuk az E0-E7 osztályokba. A lapultságot úgy számítjuk ki, hogy k=10(a-b)/a (egész számra kerekítve), ahol a illetve a b az ellipszoid nagy- illetve kistengelye. Az elliptikus galaxisok előtt jelölt még egy átmeneti típus is, amely csak magból és spirális szerkezet nélküli korongból áll, ezek a lentikuláris galaxisok.
Szerkezetüket tekintve átmenetet képeznek a spirálgalaxisok és az elliptikus galaxisok között. Korongjukban nincsenek spirálkarok, magjuk szokatlanul nagy méretű. Általában kevesebb csillagközi anyagot tartalmaznak, mint a spirálgalaxisok, csillagtartalmuk az elliptikus galaxisokhoz áll közelebb, napjainkban már nem zajlik bennük csillagkeletkezés.
Többnyire elliptikusak, tömegük épphogy eléri az egymillió naptömeget.
Olyan galaxisok, amelyeknél központi mag és szimmetriatengely sem figyelhető meg. Semmilyen lényeges jellegzetességet nem mutatnak, és a legkülönfélébb alakúak lehetnek. Tömegük 0,7-100 milliárd naptömeg közötti, előfordulásuk ritka (3%). Az ilyen galaxisokat alkotó csillagok általában I. populációsak, vagyis sok csillagközi (intersztelláris) anyagot tartalmaznak. Jellegzetes képviselőik a szabad szemmel is látható, de hazánkból nem megfigyelhető Magellán-felhők. A szabálytalan extragalaxisokban igen nagy mennyiségű intersztelláris anyag található; a Nagy Magellán-felhő tömegének például több mint felét gáz- és porfelhők teszik ki. Az Univerzum korábbi korszakában a szabálytalan galaxisok aránya lényegesen nagyobb volt, egy, 6 a milliárd fényévre lévő galaxisokról készült felmérésben számarányuk 52% volt (ellentétben a közeli galaxisok közötti, a vizsgálat szerint 10%-os arányukkal). Ezen galaxisok később ütközések során, melyek 4 milliárd évvel ezelőtt befejeződtek, más, szabályos galaxisok keletkeztek.[10]
Lényegében a Hubble-féle osztályozási rendszer továbbfejlesztése. Allan Sandage és de Vaucouleurs felosztották az S0-típusú galaxisokat: S0-, S0° és S0+ alosztályokat vezettek be az intersztelláris por és gáz mennyisége alapján. Az osztályozásban itt a normál spirálgalaxisok SA jelölést kaptak, illetve definiáltak SAB osztályokat is.
Lényegében a luminozitási osztályokkal bővített Hubble-séma. Ez a séma tartalmazza az elliptikus galaxisok alosztályait is: (zárójelben a szokásos angol elnevezés)
Morgan olyan osztályozást javasolt, amely a morfológiai tulajdonságok mellett a galaxisok színképét is figyelembe veszi. Ennek megfelelően a Hubble-féle rendszerben használatos jelöléseket kiegészítette; a galaxisok fő szimmetriasíkjának a látóvonallal bezárt szögét 1-7-ig terjedő számokkal jelzi, ahol 1 a látóvonalra merőleges szimmetriasíkot jelent.
A galaxisoknak vannak bizonyos jellegzetességei, amelyeket nem tartalmaznak a klasszikus osztályozási rendszerek.
A szokatlanul erős elektromágneses sugárzással rendelkező galaxisokat nevezzük aktív galaxisoknak, magjukat aktív galaxismagnak (AGN, Active Galactic Nucleus). Középpontjuk sugárzása változó; elsősorban nem csillagoktól ered. A középponti korongjukra való rálátás alapján rendszerezzük őket.[11]
A blazárok nevüket az elsőként felfedezett ilyen objektumról (BL Lacertae, más néven Lacertid) kapták. Két fő típusuk a BL Lac objektumok és a heves optikai változásokat mutató kvazárok. Színképükben – ellentétben a kvazárokéval – nem figyelhetők meg emissziós vonalak, és a kvazárokkal szemben százszor halványabbak a Seyfert-galaxisoknál.
Rendkívül kis méretű, optikailag is nagy luminozitású, erős rádióforrások. A kvazárokat 1963-ban fedezte fel Allan Sandage. Nevük a „csillagszerű rádióforrás” angol rövidítéséből („quasi stellar”) ered. Ennek ellenére csak kevés kvazár bocsát ki rádiósugárzást, ugyanakkor viszont erős röntgen- és infravörös-források. Az optikai tartományban általában csillagszerű pontként figyelhetők meg (innen ered az elnevezés).